Ternary Composite of Hemin, Gold Nanoparticles and Graphene for Highly Efficient Decomposition of Hydrogen Peroxide
نویسندگان
چکیده
A ternary composite of hemin, gold nanoparticles and graphene is prepared by a two-step process. Firstly, graphene-hemin composite is synthesized through π-π interaction and then hydrogen tetracholoroauric acid is reduced in situ by ascorbic acid. This ternary composite shows a higher catalytic activity for decomposition of hydrogen peroxide than that of three components alone or the mixture of three components. The Michaelis constant of this composite is 5.82 times lower and the maximal reaction velocity is 1.81 times higher than those of horseradish peroxidase, respectively. This composite also shows lower apparent activation energy than that of other catalysts. The excellently catalytic performance could be attributed to the fast electron transfer on the surface of graphene and the synergistic interaction of three components, which is further confirmed by electrochemical characterization. The ternary composite has been used to determine hydrogen peroxide in three real water samples with satisfactory results.
منابع مشابه
Efficient double-quenching of electrochemiluminescence from CdS:Eu QDs by hemin-graphene-Au nanorods ternary composite for ultrasensitive immunoassay
A novel ternary composite of hemin-graphene-Au nanorods (H-RGO-Au NRs) with high electrocatalytic activity was synthesized by a simple method. And this ternary composite was firstly used in construction of electrochemiluminescence (ECL) immunosensor due to its double-quenching effect of quantum dots (QDs). Based on the high electrocatalytic activity of ternary complexes for the reduction of H2O...
متن کاملElectrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor
Here we report a facile eco-friendly one-step electrochemical approach for the fabrication of a polypyrrole (PPy), reduced graphene oxide (RGO), and gold nanoparticles (nanoAu) biocomposite on a glassy carbon electrode (GCE). The electrochemical behaviors of PPy-RGO-nanoAu and its application to electrochemical detection of hydrogen peroxide were investigated by cyclic voltammetry. Graphene oxi...
متن کاملHighly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide
A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...
متن کاملCharacterization of Cobalt Oxide Co3O4 Nanoparticles Prepared by Various Methods: Effect of Calcination Temperatures on Size, Dimension and Catalytic Decomposition of Hydrogen Peroxide
In this scientific research work we report a novel method to synthesis Co3O4 nanoparticles via calcinations of cobalt hydroxide which can be conveniently prepared by the Co(NO3 )2.6H2O with different reactants. In order to study the effect of calcination temperature on structure and morphology of the nanoparticles, the calcinations take place at various temperatures (at 300°C, 500°C and 700°C)....
متن کاملCatalytic Decomposition of H2O2 on MnFe2O4 Nanocomposites Synthesized by Various Methods in the Presence of Silicate and Zeolite Supports
In this research iron manganese oxide nanocomposites were prepared by co-precipitation, sol-gel and mechanochemical methods by using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared in the presence of various catalyst beds. The polyvinyl pyrrolidon (PVP) was used as a capping agent to control the agglomeration of the nano...
متن کامل